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ABSTRACT

A clas; of linear systems, composed of intrinsically stable
elements, was studied. These linear systems were represented by the
coefficient matrices of their differential equations. A sample space
of these matrices was defined by specifying the nature of the distribu-
tions from which the matrix entries were selected.

Matrices of given size were generated by random sampling from the
defined sample space. Appropriate weighting of the distributions gave
control of the degenerateness, a measure of the number of zero entries.
The Hurwitz criterion was used to test whether each matrix represented
a stable system. The primary goal was to find the probability of
stability as a function of -degenerateness.

It was found, even for the relatively small matrices within the
range of this study, that the degenerateness is critical., For values
of degenerateness less than a particular amount (about 85%), the system
is almost certainly unstable, whereas for values of degenerateness

greater than this amount, the system is almost certainly stable.
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I. THE LINEAR SYSTEM

A linear system of n variables is cbmmonly described by a set of n

first order differential equations:

Xy = a9% + a; 5% + hennecees T ay %,
Ry = 8,0% + ayo%, S +»a2nxh
xn = anlxl + an2x2 toaedeeee. annxn

For purposes of manipulation, these equations, and hence the original

system, are often represented by the coefficient matrix

all al2 ala .........‘aln
an 322 a23 vese e a2n
anl an2 an3 eao s ey ann

This matrix completely characterizes the system, and so this paper
will make little effort to differentiate between the two words, system
and matrix. This will help avoid cumbersome repetition of phrases
like 'the system which the matrix represents...' No confusion is
expected from this usage.

In any one of the n equations

X X, ta. X, +t ceves 8,:X, F sy Tt asx

. = &,
1 1171 i272 1171 inn

the coefficient 3. indicates the intrinsic nature of the system element

x.. If all the other coefficients are set equal to zero, then the

i



equation reduces to

The solution of this simple equation is
a.,t
ii .
X, = e + c ¢ 1s a constant

so that if a., is negative, X, will converge to c, and we will say that

ii
X, is intrinsically stable. Consténts like ¢, which could.in fact

occur in each of the original equations as well as appearing in solutions,
will here all be assumed to be zero. We could deal with them, but it

has been establishedll] that such constants do not affect the stability of
the elements or of the system as.a whole.

To represent a system composed of only intrinsically stable elements,
then, it is necessary and sufficient that the coefficients 3172 3990
ceees B all be negative. These are, of course, the principle
diagonal entries in the matrix,.

The off-diagonal entries represent interactions, or connections,
so to speak, between the system elements. These can be positive,
negative, or zero. If an entry aij is zero, then there is no direct

effect on Xs by Xj’ and we will say that the system is partially

degenerate.

Delimiting a Class of Systems

To be practical, it is necessary to select some finite class of
linear systems to investigate. In this study, the selection is done
By specifying the distributions from which the matrix entries are
derived.

We choose the diagonal entries, asss to be negative, in the range

-1.0 to -0.1 in increments of 0.1. The selection is made equiprobably.



from this range. This distribution is shown in Figure la.

The off-diagonal elements are selected from the range -1.0 to +1.0,
in increments of 0.1, The selection is made equiprobably from this
range, except that, in order to achieve various degrees of degenerateness
in the matrices, the weight for the. entry zero is varied. This

distribution is shown in Figure 1b,

-1.0 0 -1.0 0 1.0

a. diagonal b. off-diagonal

Figure 1. The distribution of matrix entries.
Since the diagonal entries cannot be zero, we define degenerateness
as the percent of off-diagonal entries which are zero. The number of
off-diagonal entries in a matrix of size n x n is n2—n, or n(n-1). If

m of these are zero, then the degenerateness D is defined as

m

D= Ty

. 100%

3
\\

The term degenerateness is used in this paper in preférence to the
termldegeneracy, the latter being commonly used to describe the relation
between the rank and the size of a matrix. That is quite another.
subject, and so the word is not used here.

The researcher recognizes that the class of linear systems chosen
for this study might seem very restricted. However, he feels that the

results are widely applicable. By normalization techniques, any linear



system of intrinsically stable elements can be approximated by a system

in the chosen class. For example, consider the system

e
]

—24x_ 4+ 7x2 - 3x

1 1 3
Xy = 7xl —l8x2 --le3
Ry = - 3xl +le2 *l2x3.
The system matrix is
-24 8 -3
8 -18 10
- 3 10 -12.
which is equal to
-1 .833  -.125
24 .333 -.75  .417
-.125 417 -5

The roots of the characteristic equation are the same, except for the
scaling factor, for both matrices. Hence, for purposes of stability,
testing the second matrix.is as good as testing the first. It is only
necessary now to round entries to the nearest tenth to obtain a system

from the chosen class:




This approximation technique will then allow the extension of the
results of this paper to.linear systems in general, in spite of the

fact that only a limited class of systems was studied.



IT. FEEDBACK

One usually thinks of feedback as the effect of ‘a variable upon
itself. The entry ass characterizes the intpinSic feedback of' element
X If . is negative, this feedback results in xs being intrihsically
stable, as has already been noted. Purther feedback, possibly creating

instability, is possible by interactions with other elements, i.e.,

by external feedback. The simplest case is a two-step loop, for«example:

a . . . e e

11 '

. a L 2 = .
22 21

* Ay e 3, 0

. i2 i1

e e s - |

nn

It is meaningless to discuss the direction of feedback, or even

which element (for example, a,, or asss above) is receiving the feedback,

22
except by convention, These conventions depend on the physical system,
have no bearing on the matrix or mathematics, and so will not be
discussed here.

In a system of intrinsically stable elements, only external
feedback can cause system instability. In the matrix, external
feedback can oceur only if there are non-zero entries on both sides of
the prinecipal diagonal, and further, they must form some sort of a loop.
Consider the following examples.

Here is a third order system with non-zero entries only above the

diagonal:



— _
a1 ) 413

0 Y, a3 8179 89ps 833 0
_0 0 a33
amd

The variable x, is affected only by itself, and hence converges.to zero.

3
As X3 becomes smaller, its effects. on Xy and X, through ay4 and ans
become smaller, approaching zero. Then x, converges to zero, being

2

affected only by its intrinsic feedback. And so on, so that the entire
system must -be stable regardless of the off-diagonal entries.

Here are two third order systems with diagonal entries on both sides
of the diagonal. The arrows indicate the 'route' of Interactions, and

hence must alternate in row and column.

~ _ -
@) <«—23, O 3 % 0
0 3yp =—393 0 299 0
331.____2_____4>?33J 431 0 433

In the first system, a feedback loop is formed, as shown by the arrows.
This system, then, could be unstable. In the second system, no feedback
loop is present, and the system must be stable.

A plausible.suggestion is.that the greater the number of loops, the
greater is the chance that the system will be unstable, Therefore,
increasing the number of zero entries in the matrix, thereby decreasing
the likelihood of a loop, would be expected to make the system more
likely to be stable. We would expect this relation to be monotonic, up

to the point where all the off-diagonal elements are zero, at which

point the system is. certainly stable.



IIX. STABILITY OF THE SYSTEM

There have been worked out several agreeable devices to determine
whether a linear system is stable. These are based primarily on the
criterion that for all time, every system element will converge to some
value, or will at least be bounded. This is equivalent to requiring
that none of the latent roots of the system have positive real parts.

The latent roots of the system are the roots of the characteristic
equation of the matrix. The characteristic equation is founrd by
evaluating the determinant |A - AI| , where A is the system matrix, and
I is an identity matrix of the same size. The result. is set equal to
Zero.

The resulting equation, the characteristic equation, is of the form

P ar ot e na® 2 LA™ e L+ m o= o.
1 2 1 n

The coefficients my, m +» M are obtained from the evaluation of

o vt

|a - AI| , or by an alternative procedure. This alternative procedure
seems to be mechanically simpler, and is used in this work:. any
particular coefficient m, is the sum of all i-rowed principal sub-

[1] will

determinants of A, multiplied by (-1)*. An example from Ashby
illustrate this procedure.

Consider the third order system

-5 " -6

7 -6 8

-2 4 -y
- -

For this system,



[(-5) + (-B) + (-#)] (-1)" =15

-5 -5 6 2
2 [7-6 -2-4‘ l ‘(’l)

8
1}

3
18

-5 4 -6 3
my=|7 -6 8 (-1)° = 8
-2 4 -y

and the characteristic equation is

AS +,15)\2 + 2 +8=20.

There are several ways to find whether any of the roots of the
characteristic equation have positive real parts. One way, of course,
is to solve the equation. This, however, is difficult, especially since
no analytical solution exists for n greater than four. Among alternate
. . . . . S . . [1,3]
techniques described in the literature is Hurwitz' criterion.

This method requires, for the system in question to be stable, that in

the sequence of determinants,

Imll ml 1 ml 1 0
M3 M Mg My Ty
m5 mUr m3 e e e
if g > n
thenm =0
q

all are positive. This is the method of determining stability which
was ‘selected for this study.

Applying this criterion to the above example gives



ml =
ml, 1 )
m3 m2

ml 1 0

m3 m2 ml =
0 0 m3

All three determinants are

5,
15 1
= 22,
8 2
15 1 0
8 2 15| = 176 .
0 0 8

positive, and hence the system must be stable.

10



IV. THE RESULTS OF RANDOM SAMPLING

In order to determine the effect of degenerateness on the probability
of stability for systems of even moderately high order, it is negessary
to abandon any hopes for a complete solution, and turn to random sampling
as the only possible avenue of exploration. That complete solution is
nearly impossible is made evident by the observation that there are over
lOloo tenth-order systems choosable from even the limited distributions
of this study, and it takes the IBM 7084 computer about 1.25 minutes to
check each one--the task would take 2.6 x_lO94 years.[QJ

The number of manipulations, and hence the time for solution,
increase roughly with n!, thereby greatly limiting the number of matrices
of higher order that can be checked. We turn, then to random sampling.
Although a few of lOlOO would not appear to give a very good sample,
results justify the approach.

Programming for this approach was difficult only in that the program.
needed nearly complete generality. The method is straightforward,
however, Details of the program can be found in the appendix.

Data were taken over a wide range of degenerateness for the lower
order cases., Since time threatened to become excessive, data were
taken.over only a limited range of degenerateness for the higher order
cases. In fact, for the 10 x 10 system the program was modified to
check only systems within a specified range of degenerateness.

The remarkable result is the way degenerateness influences the
probability of stability. For the smaller systems, to about n=6, the

probability of stability is rather smoothly monotonic increasing with

degenerateness., But for the systems of orders n=7 to n=10, degenerateness

11



becomes criticél, so that the transition from. low probability to high
probability occurs within a narrow range of degenerateness.

These facts are made evident in Figures 2a through 2h, where the
computer results have been plotted, and a line sketched to indicate
the trend of each graph. Although one might question the exact position
of the graph lines through the data, the trend to step function form is
indisputable. Figure 2i collects, the suggested graphs so that.the
trend becomes evident. This trend is pronounced and regular, so that
as order increases, so does the graph more closely approximate a step
function.

For n=10, this step function form is pronounced, so that for values
of degenerateness less than about 85%, the probability is virtually
zero, whereas-for greater values, the probability is very high, nearly

100%.

12
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1.0 1.01
P(S) P(S)
.Bi .81
N=2 -
.6 6 N=3
4 4
2 .2
0 , . . : - 0 . , . . .
0 20 40 60 80 100 0 20 40 60 80 100
%D %0
2A. 2B.

1.0;
P(S)

0 20 40 60 80 100
%D
2C. 2D.

FIGURE 2.

PROBABILITY OF STABILITY VERSUS DEGENERATENESS
FOR RANDOM LINEAR SYSTEMS, ORDERS TWO THROUGH TEN.
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1.0; 1.0 -
P (5) P (S)
.81
.6
04 h
02 T
. Y . 0 r
0 20 40 60 80 100 0 20
%D
2E.
1.0 5 1 0 b To—
P(S) P (s
-8 7 .8'
N=10
6 1 .6
r
'4 1 04'
o2 - o2
oL : : - 0 : : : o —
0 20 40 60 80 100 0 20 40 60 80 100
“%D 7D
26, 2H.
FIGURE 2.

PROBABILITY OF STABILITY VERSUS DEGENERATENESS
FOR RANDOM LINEAR SYSTEMS, ORDERS TWO THROUGH TEN.



1.0 - — s —
/A
n=2
.8
n=3
.6 1
n=4
4
n=5
L2
n=6
n=|0
0 v v L v
0 20 40 60 80 100

% D
21.

Figure 2, Probability of Stability versus
Degenerateness for random | inear systems,

orders two through ten.
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V. POSSIBLE EXTENSION OF RESULTS

Another presentation of the data will show the regularity of the
trend, and perhaps give a clue for extension to higher . order cases.
Consider the value of degenerateness at which a system achieves a
probability of stability of 75%. The relation between this.value and

order is revealing. Table 1 and Figure 3 present. the relation.

n D% D%
1 0 100 -
2 12 80 - oo—om— 7 °
o_ -
3 37 /,"
60 4 A
4L 58 =
///
5 65 40 - py
/0
6 74 /
204 /
7 77 /
/O
8 80 /
1 2 3 4 5 6 7 8 9 10
1
10 83 n
Table 1. Figure 3. Degenerateness for 75%

probability of stability
versus system order.
The selection of 75% is arbitrary, and any other value would have
served as well. What is important is the regularity, and the trend to
step function form. For purposes of prediction, Figure 3 could: very

well be approximated by an exponential curve. Roughly,

D - 100 (l_e-.zsu(n-l))

75% n=1, 2, 3, ...
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However, though we might expect this kind of relation, it gives a clearly
incorrect result. The following table gives, for some larger orders,
the number  of non-zero entries allowable in a matyix for it to have the

degenerateness required by the above approximate egquation.

n 10 11 12 13 20
# non-zeros 12 11 10 10 5
Table . 2

This does not agree with intuitive ideas about loops and feedback

within the matrix. It would be more plausible that the curye of Figure 3
actually become nearly level for larger systems, at some constant value.
If the asymptotic value were 90%, then Table 2 would look a. little

different, as in the following Table.

n 10 11 12 13 20
# non-zeros 12 12 13 16 38
Table 3

This is much more agreeable with the idea that, with larger matrices,

there are more ways to slip in entries without ferming loops.
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VI. ANOTHER APPROACH

Although the main body of the work must be done by random sampling,
some insight can be gained by some further investigation. A study. of
the characteristics of the Hurwitz criterion, and complete solution for
systems of order two and three, will provide an understanding that.the
author feels essential to further progress in the right direction.

Starting with the distributions of the matrix entries, it is
possible to arrive at distributions of their sums and products. This
allows an overview of all that is significant, and does not depend. on
random. sampling.

The distributions of the matrix entries were given in Figure.l,
and are repeated here, approximated by straight line segments. This
practice will be continued, though it must be remembered that all the

distributions are discrete.

~-1.0 0 -1.0 0 +1.0

a. diagonal, a b. off-diagonal, a

1 2

Figure 4. Entry Distributions, approximated by continuous
line segments.

Now let the symbol a, represent any diagonal entry, since they are

1

indistinguishable, being represented by a single distribution. Similarly,

let a, represent any off-diagonal entry. Conventional arithmeti¢ notation



will be retained, but with a slightly different interpretation. For

example,

k =a; ta
will mean 'k is the distribution of the sum of twe numbers, the first
chosen from distribution a, and the second chosen from distribution al.'

Figure 5 gives a; and k = a; +ap. A more lengthy discussion of forming

sums and products of distributions Is given in the appendix,

-2.0 0

Figure 5. Distribution of a Sum.
To see the application of this sort of idea, let us investigate a

simple second order system:

Since the entries are distributions, rather than specific numbers, the
notation represents all possible systems which can be chosen from. the
specified distributions. Applying the Hurwitz criterion, a sequence

of two tests in this case, we get

m, = —(al + al), and m, = a..a

1 = d,.a

2 - %1°%1 T %2092



These distributions are shown in Figure 6.

Figure 6. Distributions my and m, for a

second order system.

Of course, a, has a variable.weight for zero, and hence any

distribution dependent on a, will depend then.on the weight of zero in

2

a The distribution shown in . Figure 6 is for a, weighted uniformly,

2° 2

including zero.
It is convenient here to introduce a bit of notation. The Hurwitz

criterion contains n tests for an n x n system. These will be labeled .

n .n n
T

T0s Tos « v v v v 5 To.

For the second order system in the present work,

The criterion states that if Ti is positive then the system has passed

this test. From Figure 6, we see that the entire distribution my is

positive, and hence every second order system chosen from.the given

distributions must‘pass the first test of the Hurwitz criterion. This,

of course, could have been noted by inspection, but the author believes.

there is value in pursuing this approach, for the understanding of the

method it will provide.

20



The second test of the criterion is.

This -distribution is given in Figure 7.

Figure 7. Tg for a second order system.

Again the criterion states that Té be positive for the system to
pass this test. In this case, a portion of the distribution is negative,
representing those second order systems that are rejected at this, test.
The ratio of the positive area to the total area is the probability
that a second order system will be stable. In this case, the ratio is
.75. We have then determined that the probability of stability of
a second order system weighted uniformly for zeros is 75%.

This procedure was repeated with a weight for zero of 25% in s

giving a new'Tg; This is given in Figure 8.

/

Figure 8. Tg for a second order system,

weighted for 25% zero entries.



There is a definite shift to the positive side of the distribution,
indicating a higher probability of stability. For this distributioen,
the probability of stability is about 85%. We now draw an. approximate
graph of probability of stability versus percent zeros, as in Figure 9.
Indeed, this is crude, with only two points--but it is sufficient to

indicate the trend and the method. Compare this with Figure 2a.

P(S) 1.01
.5
O L4
50% 100%
D

Figure 9. Probability of stability versus percent

zeros for a second order system.

For a third order system, we have

r ., - -

a, a, a, m, = (al ta; ta; )

a, ay a, m, = 3.(al-al - a,a, )

a, a, a; my = - (al-al-al + 2oa25a2'a2’— 3'al'a2-a2 )

These distributions, for various weights of zeros, are given in Figure 10.

The sequence of tests is

3 .
ml 1 0 Tl = ml
. 3 = . —
m m, my T2 mm, - Mg
3 = -
o 0 Mg T3 m,m,m, mgm,

22
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All matrices, of course, pass Ti. The distributions of Tg'for the

various weights for zero are given in Figure 11.

AN

My M, P(0) = 5% M,, P(0) = 25%
) /\ j
Mo, P(0) = 50% M, P(0) = 75% My, P(0) = 5%
M, P(0) = 25% Mg, P(0) = 50% Mg, P(0) = 75%

Figure 10. My, My, and m, for various weights

3
for zero.
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N

P(0) = 5% P(0) = 25%
P(0) = 50% P(0) = 75%

Figure 11. Tg for various weights for zero.
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In each'case, there is a percentage that is rejected at this step.
This percentage decreases as the probability of zero increases. The

following table gives the results of mechanical integration using a

planimeter, of these distributions.

Weight for Percent rejected-
zeros at test Tg
5% 20
25 13
50 7
75 6
Table 4

The results in Table U4 compare reasonably well with the results

obtained from the random sampling approach. The graphs are presented .

here for compariscn.

o
Percent
Rejected 30
20 10

~
~

' \\O\\ ’/-L/
104 .
0~~0_._ O~~__

R el

—p— -

25% 50% 75% weight for zero

distribution approach .

random sampling

Figure 12. Percent rejected at. test Tg

versus the weight for zeros.
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Once a system has been rejected, further tests are unnecessary.

Therefore, the expression for T3

S’is modified in order that we can

eliminate from it the systems that were rejected at test-Tg.

T3 = m.m -m
3 = Moy "3
but T3 = m,m, - M
27 7172 3
3 _ .3
S0 T3 = T2m3

s . . 3
Now we can 'erase' the negative portion of Tg before forming T3,
arriving at a distribution which does not include systems previously
rejected. Our notation for an 'erased' distribution will be a superscript

E. Figure 13 shows the process clearly.

3 ' 3E
T T3

Figure 13. Tg, and TgE

Therefore, a more meaningful expression for the third test is

3 _ .3E
T3 = T2 mg
and we see that whether our third order system passes its final check

depends only on the value of m,, which is the system determinant. This-

3

is because TSE contains no negative portion, and hence a porticn of-

can be negative only if a portion of m, is negative. The distributions

3

derived from the modified expression are given in Figure 14,
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//A\\iio) = 5% P(0) = 25%

P(0) = 50% P(D) = 75

(3

)

Figure 1k. Tg for various weights for zero entries.

The negative portions represent the rejected systems, and again,

the ratio of areas gives the percent rejected at check T3 The results

3

of mechanical integration are presented in the following table.

Weight for % Rejected at
Zeros Check Tg
5% 39
25 34
50 22
75 13
Table 5

For Tg, as for Tg previously, the tabulated results compare well

with those obtained by random sampling. These are presented in Figure

15. It is suggested that the differences between the results are due



to exrcessive approximations. in forming the distributions in the present

approach,
40 4
Percent O\
Rejected N MO
30 {ON ¢
NN st
~ \\\ 4 (__—distribution approach
~N O
20 ~ N
~ ~
> ~
O\\ O‘
10 1 o 7____random sampling
result
9 “50% o 9%
25% 50% 75% 100% P(0)
Figure 15. Percent rejected at step,T3

3
versus the weight for zeros.

Combining the results of Table 4 and Table 5, we can arrive at a

relation between overall probability of stability and the weighting

for zero entries. This is given in Table 6 and Figure 16. Compare
P(8)
. . . b
this with Figure 2 1. 00. j
- -~
//
Weight for % Stable _-0
. 757 /()”
Zeros -
-~
_-0
50107
5% 4g O
25 58 s
50 73
75 82 25 50 75 100
P(0)
Table 6.

We have thus exhausted,

Figure 16. Percent stable versus

weight for zeros.

except for detail, the second order and

third order cases. Computer time in forming the sum and product of

28



distributions is not excessive, but the number of operations necessary
to check each system increases roughly as the factorial of the system
size, and hence this approach becomes unduly time consuming for larger
systems.

The distribution approach amounts to simultaneous checking of
every possible system in the chosen class. Random sampling technigues
then have an advantage since they require checking only a very few of
the total number of systems,

A last note is in order before the distribution approach is

finished. For an.arbitrary size system, a Hurwitz criterion matrix of

the following form is generated:

ml 1 o o0 o0 o0 . ., . . . 0
m3 m2 ml 1 6 o0 . . . . . 0
0 0 0O 0 0 0 0 O m n-l mo_,
0 0 o o . . . .+ 0 O mn
| -

The next to last test Tg_ is the determinant of the submatrix up to

1

but not including the final row or column. The last check is then

Tn - TnB o
n- n-1"n

and is clearly dependent only onm_, which is.the system determinant

multiplied by (—l)?. No doubt a great deal of time could be saved by
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checking mn,first, which is much simpler than going through the entire

Hurwitz check. If m - is negative, the system is unstable.
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VII. DIRECTION FOR FUTURE. WORK

This study has revealed that for a limited class of linear systems,
degenerateness is critical. For larger systems, it is very critical,
so that the graph of probability of stability versus degenerateness
becomes nearly a step function.

This result is important and applicable. But there is a need:
for continued investigation of this type with some different, specific
system types. Probably of most importance would: be a.study~of‘large
systems composed of a number of smaller, individually stable subsystems.

In fact, it would be interesting to see if most of the larger
systems studied in this paper might not be decomposable into smaller
stable subsystems. No such activity was attempted here.

A second area of study might be of systems composed of
intrinsically unstable elements, or with elements selected from-
essentially different distributions.

The author hopes the present work will be of assistance in these

future proijects.



32

APPENDIX A

PROGRAMMING FOR THE 'RANDOM: SAMPLING APPROACH,

The flow charts for the random sampling program are presented
subsequent to this bprief introduction. As they are nearly self-
explanatory, little else will be said.

Someone casually inspecting the program might be upéet to note
that brute force, instead of some clever method, is used to evaluate
determinants. The reason for this.is multifold: first, many 'clever'
methods break down or lose accuracy when dealing with singular matrices,
or with matrices whose entries differ widely in magnitude; further, all
available methods destroyed the matrix being evaluated--an unforgivable
trait in this.instance; and lastly, perhaps as a consolation, 'brute
force'! allows cone to take advantage of the large number of zero
entries that are anticipated.

It is sufficient here to note that the program is given the two.
entry distributions, the size of the matrices to be generated, and the
number to be checked. It then generates the matrices, counts the number
of zero entries in each, notes at which step of the criterion it is
rejected, or 1f stable, stores the matrix on tape for later printout.

The output consists of; first, a 1list of the number of systems
rejected at each step of the Hurwitz criterion; second, a list of ‘number.
of matrices with each number . of zeros which were found to be stable and -
unstable; and finally, a printout of all the stable matrices.

A program listing follows the flow charts. Please note that RIT7

should be interpreted as READ; WOT6 should be interpreted as PRINT,



DETERMINANT
EVALUATOR SSUM=0.0
SUBPROGRAM | msre?
S ﬁ‘\'i

I=1
iIP()=1

> [=1+1

33

11- K (1, K\

K=Jy.. MS\Z

TeJT+1 "‘“

I=11(J)

MEUM (K)
=0

K‘-‘-J,. .MS\Z

t

MSUM(JT+])=
\* Determmant
of Remainin

Ax2 MATRIX

—

ITUK (T ,K)
=0

K: J,.cMS"'

MSUMLT) =
M IUM (T)+




34
ENTER

HURWITZ CHECK |aseore==

ASSIGN ‘ -
/IS0 TO Mmm LL = MORD-I

SUBPROGRAM 217 TO NNNN I = TTLOH

232 70 KKKK JILL ¢ 4) s

IJI(LL) *+ 1
\b A= 1,1

ASSIGN @ TO N
. ) J=0
> Set JI(iy=ad

L= /, MoRD
M(D>0 ?
I YES \l
JJ3=0 I =0
! ) ,’
A Y Lonp MTMP w/ A
H H vECToRGD MaTtRix ‘k
A P Mathar 1-1+1
(except for TeTeq
M) - see )\
above)
KRS =
JSTBL (MoRrD)
2l7 o To 214 {
NNNN
A Wr=3JJ+1 ¥ -— n‘?"';’.o -
A
ASSIGN
MORD =MORD +1 - A% Ta NNNN e
,t ‘ 7 233 To KKKK
—

IKRSzKRS + 1
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The two decision steps numbered in parentheses on the previous page
are of a special nature:
(1) If this test is
negative: JJ(MORD) <MS1Z, continue to generate vectors.
zero: JJ(MORD) = MS1%Z. Indicates that present (as yet
untaken) vector is last with given first components.
Set up to change a previous component.
plus: only when vector just generated is 1,2 ... MS1Z.
Set up to skip further evaluation of M, and for

relooping on check - and go get final matrix.

(2) If this test is
negative - not yet to fingl vector of size MORD, continue.
zero - present vector is last in series of size MORD. Set

up for evaluation, loading. Plus is not used.
Meaning of selected program variable. names:

IAR - number of matrices of current size that will fit -across a

page of output.

I1I - position index in Hurwitz check portion.

ITP - gives number of matrices of each size that has been stored
on tape.

JJJ - special counter in. Hurwitz check portion.

K - modified ITP, for output purposes.

KL - - possible number of zeros, in matrix.

KREJ - table of numbers of matrices rejected at each step of the

Hurwitz check.



KRS

LEFT
LIM

MCTR

MORD
MS1z

MSV@

MVV@

ND
NMLIST
NN

s

SAT

SEVAL

SMAT

STMP

SVAL

carries the test number in.the Hurwitz check portion, gives.
step at which matrix is rejected. KRS is set to zero if
matrix is stable.

number of matrices to be printed in last row of output.
number of matrices, of each size to check.

matrix counter, gives number.of matrices of current size
which have been checked.

current size of submatrices being generated.

current size of the matrices under test.

table of numbers of stable matrices versus number of zeros in
the matrices.

table of numbers of unstable matrices versus number of zeros
in the matrices.

largest size matrix to check,

list of numbers, 0-100, for output purposes.

number .of zeros in matrix currently under test,

Hurwitz matrix of characteristic equation coefficients.

the matrix being tested for stability.

the result of subroutine EVAL in general, also used for
summing SVAL.

overlay matrices, used.only to - facilitate the orderly
dumping of the matrices which have beén stored on tape.

a temporary matrix which holds each submatrix for evaluation.
a list which holds the values of submatrices,fbr later

summation.
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MAIN PROGRAM MODIFIED TO ACCEPT ONLY MATRICES WITH -CLOSE TO MODc ZEROS
———- DATA SEQUENCE FOR THIS PROGRAM
1 CARD»s314s MSTTs NDs L.IMsMODE
2 CARDSs DOCUMENTATION INFORMATION
1 CARDs 1012+ K (RAM2 INITIALIZATION)
41 CARDSs DISTRIBUTION TABLE
ALSNs 471 CARDS WITH NON~ZERQ DISTRIBUTION FOR DIAG TO READ.
DIMENSION SAT(11911)9STMP(11511)sSMAT(10510510)95(11511)sMSVU(101)
1 oMUVO (1071) sSVAL (260 sKREJ(11) s ITPU11) oNC{4)sJJ(11)sKTM(3510)
2NMLST (101
DIMENSION SMNTD(1001)sSMNTS(1G01)
DIMENSION ISTBL{11 )+JSTBL{11)
NIMENSION TTUK(11911)s5SUM(10)
NDIMENSION NAME (36)
COMMNN SATsSTMP s SMAT 9 SeMSV O o HMUVO s SVAL sKREJ s ITP aNCoJJsMSIZsKRSsSEVA
TLIMORD s NMLST
wWDT6s 51
DO 220 1=1.10
SSUM(1)1=0.,0
PO 220 U=1910
220 TTUK(TsJy=0
RIT797sMSTToNDaLIMIMODE
7 FORMAT (714)
RIT7 92N, ((MAME(I) ) sT=1936)
2NH FORMAT (2X12A6)
C— INITIALIZE
PO 72 I1=1,101
72 NMLST(IY)=1-]
MGTZ=MSTT
DN RA T=MSI7 sMD
ro T1TP({TI)y=nNn
NN 227 1=1+10
ISTBL(TIY={1I+2)/2
IF (2%ISTBL(1)=2-1) 16121622161
161 JSTBL(I)y=1
an 10 237
227 CONTINUE
INITIALIZE RANDNOM GENERATOR
901 RIT7sn0sK
9o FNRMAT(1012)
CALL RAMDZAI(K)
READ IN DISTRIBUTION TABLEs SET DIGEN TABLE
RIT792071s ((SMNTS{I))sI=1+7001)
3071 FNARMAT (728F2,1)
CALL DTIAG (SMMTS»SMNTD)
————— LOADS PFRMAMENT ZEROS AND ONES INTO M
NN 172 I=15
J=2%]
S(I21)=1.0
J=J+1
no 173 JJ=Js10
172 S{Is0J)=0 N



Comma— LNADS ZErRNS IN CE1LS M(I) GT M(MSIZ)
T=(MST1Z+33)/?
TF(2%(1-1)~MST1Z) 4243942

42 J=1 '
Gn To 44
47 J=2
44 DO 45 11=1+10
DO 46 JJ=1sJ
t6 S{ITeJJ)=0en
J=Jd+2
4% CNONTINUE
Ggo Tn 777
201 MST1Z=MS1Z+1
777 DO 18 I=1sMS1Z
18 KREJ(1)=0
MCTR=0
KL=MSTIZ#MSI7+1
NO 19 I=141M
MSVN(T)=Nn
19 MUVO(T1)=0
C SUBROUTINE TO GENERATE OFF DIAGONAL ELEMENTS
87 DO 20 T=1sMS1/7
DO 20 J=1sMSIZ
IF{I~-J)y 292029
29 X=RAM>B(N)
KK=XFIXF{100040%#X+1 )
SAT(T4J)=SMNTS(KK)
20 CONTINUF

C SUBRQUTNF TO GENFRATE DIAGONAL ELEMENTS
DN 88 I=1sMS1Z
X=RAM>B(0)
KK=XFIXF(1000,0%X4+1.C)

28 SAT(1sI)=SMNTD(KK)
NN=1
PN 21 I=1sMS81Z
N 21 J=1eM517
IF (SAT(TsJ)) 2192321
23 NN=NN+1
21 CONTINUE

C —-—— CHECK 70 SEE IF THE NUMBER OF ZEROS IS ACCEPTABLE

1F (2-XABSF (NN-MODE~1)) 40194014400
401 MUVO(101)=MUVD(101)+

GO TO 87
4nn CONTINUE

Cmm— SUBROUTINE FOR HURWITZ CHECK
MORD=1
ASSIGN 150 TO MMM
ASSIGN 217 TO NNNN
ASSIGN 232 TO KKKK

151 ASSIGN 6 TO N
J=0



22

22

KRS AND II1I ARE START POSITIONS OF WRITE IN Me

PN 1 T=19MORD

JIIy =T

1=n

NO 22 K=1MNRD

NN 22 L=1,MORD

KK=JJ (K}

LL=JJ(L)y
STMP(KsL)=SAT(KKsI L)
J=J+1

CALL FVAL (STMP+SFVAL sMORD ITUK s SSUM)
SVAL (J)Y=SFVaL

GO Tn Ns(5.4)

LL=MORD~-1I

JUlLLy=uJd(LL)y+)

DO 37 11=1,T7

KK=Lt+T1

JIKK Y= g0 01 )+11
IF(JIUILL)=MSTIZ+]) 1333955
I=1+1

IF(I-MNRD) 2s494

ASSIGN &5 TO N

GO TN 2

ASSIGN 214 TO NNNN

ASSIGN 232 TO KKKK

SFVAL =0 N

NO A5 K=1e+J

SEVAL =SEVAL+SVALIK)
S{MORD sMNRD ) =SEVAL #{ =1 e U ) #¥xMORD
GO TO MMM, (1504152}
ASSIGN 152 TO MMM
TF(S(1s1)) 14551532153
KRS=1

GN Tn 24

JJJ=0

LOAD M INTH MATRIX WHERE NEEDED

39

THE STATEMENTS AFTER

713 ROUTE CONTROL SO THAT AFTER ALL PERTINANT M ARE CALCULATEDs THE

M MATRIX IS CHECKED TO COMPLETION WITHOUT FURTHER CALCULATIONS

152

142

158

KRS=1STRL(MORD)
TTI=JSTBL (MORD)
KK={MSTZ+MNRD) /2

NN 188 TI=KRSsKK
S{IIsTTI1¥=S5{MORDIMORD)
I1I=171+42



215
216
233

232

——— s e

28

12
26

27

28

1

50

A1
Y4

877

GD TO NNNNe{2179214)
SEE IF NEXT TwO MtS HAyYE BEEN GENERATEDe IF NOTs GET SECOND,
EVALUATE THE AVAI{ABLE KRS X KRS MATRIX
JJIJd=JJJ+1
1F(JJU=2) 21352139214
MORD=MORD+1
GO T0 151
IF (KkRS-MSIZ) 21675925
GO TH KKKKs{2329233)
KRS=KRS+1
GO TO 214
JJJ=0
Gn TO 217
CHECK MATRIX =~— IF GOODs CHECK 1S MAT IS TOTALLY CHECKED
CALL FEVAL (S»SEVAI sKRSsITUK »SSUM) . ==1F NOT, GO TO 217
IF {SEVAL) 2492159215 b
THIS pPnINT IS EXIT FROM HURWITZ CHECK SUBROUTINE
MUV U (NN =MUVO {NN) +1
KREJ(KRS)Y=KREJ(KRS)+1
G0 TO 26
MSVO (NN =MSVO (MN) +1
ITP{MSIZY=1TP(MSIZ )+
WRITE OUTPUT TAPE 40120 ( (SAT{(T 9 J)eI=1sMSIZ})sJd=1sMSI12)
FORMAT ( F541)
MCTR=MCTR+1
TF (MCTR=LIM) 87927927
KK=MSTZ+1
WNTH 305 ((NAME(I))sI=1936)
WOT6E s RO
WOTEs 289sMSTZs (NMLST(I)sI=2sKK)
FORMAT (12X12HMATRIX SIZFE 14//715X5HI = 1016)
WOTAe 21 (KREJ(I)sl=14MS1IZ)
FORMAT (20H REJECTED AT STERP 1 1016)

WNTHs BN
FORMAT (//)
LL=1n0

NO 34 T=74KLe10
TFAKL=TI~10) 671962962

LL=KL-1
N R7T7 J=TelL
KK=J+1 -1

KTM{1 4 J)=NMLST (KK}
KTM(24J)y=MSVO(KK)
KTM(3,4J)=MUVO (KK)

IF 50

40



L1

WOTH 876+ (KTM(19J)eJd=1sLL)
WOTEs878s (KTM(29J) s d=1sLL)
WOTHsBT7TOs {KTM{ 3sJ)eJd=1sLL)

876 FORMAT (20H NUMBER OF ZEROS 1016)
878 FORMAT (»20H NUMBER STABLE 1016)
g8~o FORMAT (20H NUMBER UNSTABLE 101g/7/)
34 CONTTNUE

WOoT6s 51

51 FORMAT (1H1)
IF (MSIZ-ND+1) 201392019202
2072 WRITE OQUTPUT TAPE 4+ 12s((SAT(KsL)sL=1sMSIZ)sK=1sMSIZ)
REWIND 4
SAVE RANDOM GENFRATOR INDEX
CALL RAM2C{k)

WNTH 909G 4K
WOTEs305e ( (INAME(T) ) s1=1936)
WOT6Ee52
52 FORMAT (//20H STABLE MATRICES=-~ //)
I1=MSTT :

200 X=ITP(1)
IF (KY 2034202208
208 TAR=20/1
NN=K/TAR
LEFT=K-NN*TAR
K=NN#TAR~1
TFINNY 21192119212
212 ASSIGN 204 TO MM
DO 204 J=1sKsTAR
210 DO 205 KK=1sT1AR
2085 READ INPUT TAPE 49129 ({{SMAT(KKsIIsJK))sIIl=1sI)eJK=1s1)
DO 206 T1I=1,s1
206 WOTEs 23008 ({ {SMAT(KKKeIIsJK))sJK=121)sKKK=1sIAR)
WNTé&s B0
200 FORMAT (1X20F541)
GO TO MMy (2044203)
204 CONTINUE
211 TAR=LFFT
ASSIGM 202 Tn MMm
GN TN 21N
203 1=1+1
IF (I1=ND) 209+2095990
999 CALL SYSTEM
FND



25
26

27

30
31
40
32
12

11

13

14

15

21
10

19

SUBROUTINE EVAL (SsSEVALSMSIZsITUKsSSUM)

DIMENSION S(11911)2ITUK(11911)sI1(10)952X2(292)555UM(10)
DIMENSTION TP(11)

IF (MSIZ-2) 28+26927

SEVAL=S5(1+1)

RETURN

SEVAL=S5(191)%#S(292)=5{152)%5(2s1)

RETURN

SSUM (1)=n .0

J=1

KKK=MS1Z~1

1=1

1P(Jy=1

IF (ITUK(IsJ)) 49455
11(Jy=1

IF (IP(J)~2) 30+31+30
IP(Jy=2

GO TO 40

1IP(Jy=1 :

IF (S(I9J)) 22959232
PO 12 L=JsMST12
TTUK(Ts1)=1
IF(J+2-MSIZ) 8s9»8

IF (1-MS1Z)Y 6797
1=1+1

GO Tn 3

J=Jd-1

IF (J) 11911917
SEVAL=SSUM(1)

RETURN

1=11(Y)

GO To 10

J=J+1

GO To 2

KK=KKK

LL=1

T11=0

I1I=111+1
IF(ITUK(IIToKK)) 14515914
S2X2(LLs1)=S(111sKK)
S2X2(LLs2)=S(TIIT1sMS12Z)
LL=LL+1

GO TO (14s14921) st L
SSUM(KKK)=S2X>(1971)%#52X2(292)=52X2(192)%52X2(251)
KK=J+1
SSUM(J)=SSUM J)+S{T1 s J)#SSUMIKK ) #*{(—-10)5%IP ()
ITTUK(T9J)=0

DO 19 L=KKsMS1Z
TTUK(TsLL)=0
SSUM({L3)=0.0

0 To 5

END

u2



APPENDIX B

FORMING SUMS AND PRODUCTS OF DISTRIBUTIONS

While analytic techniques exist for finding sums and products of
distributions,. these are applicable to continuous distributions and
quickly become extremely complicated to employ. Frequently, they. are

not applicable if either distribution includes.the point zero.

The author devised a simple means of finding the sum and product -

of two discrete distributions, based on elementary counting. An
example will demonstrate the technique.

Consider two very simple distributions as follows:

!

0 with probability 60%
1 with probability u40%

a,
1 with probability 30%
2 with probability 70%

We desire to find the sum distribution. The method is equivalent to

forming the following table:

ay/ay 0 0 0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 2 2 2 2
1 1 1 1 1 1 1 2 2 2 2
1 1 1 1 1 1 1 2 2 2 2
2 2 | 2 2 2 2 2 3 3 3 3
2 2 2 2 2 2 2 3 3 3 3
2 etc.

2
2
2
2

43
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The resultant distribution is determined by countiné the frequency
of entries in the table. The program, of course, does not bother -adding,
say, 0 to 1 more than once, but the idea is the same.

The program adds every pair once, and notes the product of 'their

weights. In the current example we have

0+1=.1 (.60)(.30) = .18
0+ 2=2 (.60)(.70) = .42,
1+1=2 (.40)(.30) = .12
1+2=3  (.40)(.70) = .28

The program then adds the probabilitles for each value of the

sum, so that al + a, =

1 with probability ,18
2 with probability .54
3 with probability .28

The same procedure is followed to obtain product distributions.
This programming effort was subdivided into subroutines, each
called on command by an:input data card. Thus the programmer has-
complete external control over the sequence of operations. The
programming was not difficult and will not be presented here. The
only special feature was that distributions were output as graphs

by fhe,computer, thus saving hours of tedious labor.



Number
Zeros

Number
Zeros
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APPENDIX C

SYNOPSIS OF OUTDATA:

Matrix Size 2 x 2

Degenerateness,

50
100

[
)

Number
Tested

192

Matrix . Size 3 x 3

Degenerateness,

17
33
50
67
83
100

g
K

Number

Tested
152
103
81
47
u8
49
20

Number
Stable

1ub

Number

Stable

8l
69
59
38
42
49
49

45

Percent
Stable
75
100
100

Percent
Stable

55

65

73

81

- 87
100
100



Number
Zeros

O O N O »o1 F W NN = O

o e
N = O

Matrix . Size 4 x U

Degenerateness, %

16
25
33
42
50
58
66
75
83
92

100

Number
Tested
49
60
36
28
27
36
26
30
31
33
30
8
6

Number
Stable
16
26
iy
14
14
17
17
22
25
32
29
8
6

Percent
Stable
33
43
39
50
52
u7
65
73
81
97
o7
100
100

16



Number
zZeros

0w O N o e FowNn = o
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Matrix Size 5 x 5

Degenerateness, %

10
15
20
25
30
35
40
L5
50
55
60
65
70
75
80
85
90
95
100

Number
Tested
36
b7
20
20
19
28
21
17
16
18
20
20
13
19
22
25
20
14

6

Number
Stable

9

s
v F O F 00 O W oW w3

|
w

12.
15
23
19
12

Percent
Stable
25
28
15
15
16
35
28
24
25
28
65
4o
54
63
68
92
95
86
100

100

47



Number
Zeros
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Matrix Size 6 x 6

Degenerateness, %

10
13
17
20
23
27
30
33
37
40
43
w7
50
53
57
60
63
87
70
73
77
80
83
87
90
93
97

100

Number

Tested
54
yin
50
19
12
17
19
18
11
12
12
17
10
12
14
14
18

16
15
15
22

o O N O o

Number
Stable

[ IR - TR N TR & ; S = 7% B S S =L ¥ I N ¢ T o ) TR ¢ B o S o I e o B ¢ o B €3}

= o
N I

o o O 3

Percent
Stable

6
11
18

5.
0
12
15
33
27
8
25
35
10
33
28
21
22
63
40
40
56
69
80
u7
77
88
100
100
100
100
100

L8



Number
- Zeros
22
23.
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Matrix.Size 7 x 7

Degenerateness, %

52
55
57
60
62
Bl
66
69
71
i
76
79
81
83
86
88
90

Numbex
Tested

®w FOFE N O

12
10
13
10
11

N O F O

Number
Stable

N O 3 e 0w FF N o O O O

Percent .
Stable
0
0

25
50
12
33
40
69
80
73.
87
88
100
100
100

L9



Numbep -
zeros
32
33
34-
35
36
37
38
33
40
41
42
43
4i
u5
46
47
48
49
50
51

Matrix Size 8 x 8

Degenerateness,

57
59
61
63
ol
66
68
70
71
73
75
77
70
80
82
84
86
88
89
91

9
%

Number
Tested .

A e

= e
O ~N 3 O N

| i TR o BN —o & ) B =S 6L B © A N o]

Number
Stable

H N O NN W F OO WY W F O O oo O

Percent
Stable.

20
100
33
33
29
43
32
66
57
60
66
75
40
100

100
100

50



Number
Zeros
T4
75
77
78
79
81
82

Matrix Size 10 x 10

Degenerateness,

82
83
86
87
88
390
91

o
]

Number
Tested

H o NN B o

Number
Stable

= o~ N O O O

51

Percent
Stable

0
0
0
50
100
100
100
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matrices was defined by specifying the nature of the distributions fron
which the matrix entries were selected.

Matrices of given size were generated by random sampling from the
defined sample space. Appropriate weighting of the distributions gave
control of the degenerateness, a measure of the number of zero entries)|
The Hurwitz criterion was used to test whether each matrix represented
a stable system. The primary goal was to find the probability of
stability as a function of degenerateness.

It was found, even for the relatively small matrices within the
range of this study, that the degenerateness is critical. For values
of degenerateness less than a particular amount (about 85%), the systen
is almost certainly unstable, whereas for values of degenerateness
greater than this amount, the system is almost certainly stable.
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